8,765 research outputs found

    Selections

    Get PDF

    PerformanceNet: Score-to-Audio Music Generation with Multi-Band Convolutional Residual Network

    Full text link
    Music creation is typically composed of two parts: composing the musical score, and then performing the score with instruments to make sounds. While recent work has made much progress in automatic music generation in the symbolic domain, few attempts have been made to build an AI model that can render realistic music audio from musical scores. Directly synthesizing audio with sound sample libraries often leads to mechanical and deadpan results, since musical scores do not contain performance-level information, such as subtle changes in timing and dynamics. Moreover, while the task may sound like a text-to-speech synthesis problem, there are fundamental differences since music audio has rich polyphonic sounds. To build such an AI performer, we propose in this paper a deep convolutional model that learns in an end-to-end manner the score-to-audio mapping between a symbolic representation of music called the piano rolls and an audio representation of music called the spectrograms. The model consists of two subnets: the ContourNet, which uses a U-Net structure to learn the correspondence between piano rolls and spectrograms and to give an initial result; and the TextureNet, which further uses a multi-band residual network to refine the result by adding the spectral texture of overtones and timbre. We train the model to generate music clips of the violin, cello, and flute, with a dataset of moderate size. We also present the result of a user study that shows our model achieves higher mean opinion score (MOS) in naturalness and emotional expressivity than a WaveNet-based model and two commercial sound libraries. We open our source code at https://github.com/bwang514/PerformanceNetComment: 8 pages, 6 figures, AAAI 2019 camera-ready versio

    Selections

    Get PDF

    From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz

    Full text link
    The next few years will be exciting as prototype universal quantum processors emerge, enabling implementation of a wider variety of algorithms. Of particular interest are quantum heuristics, which require experimentation on quantum hardware for their evaluation, and which have the potential to significantly expand the breadth of quantum computing applications. A leading candidate is Farhi et al.'s Quantum Approximate Optimization Algorithm, which alternates between applying a cost-function-based Hamiltonian and a mixing Hamiltonian. Here, we extend this framework to allow alternation between more general families of operators. The essence of this extension, the Quantum Alternating Operator Ansatz, is the consideration of general parametrized families of unitaries rather than only those corresponding to the time-evolution under a fixed local Hamiltonian for a time specified by the parameter. This ansatz supports the representation of a larger, and potentially more useful, set of states than the original formulation, with potential long-term impact on a broad array of application areas. For cases that call for mixing only within a desired subspace, refocusing on unitaries rather than Hamiltonians enables more efficiently implementable mixers than was possible in the original framework. Such mixers are particularly useful for optimization problems with hard constraints that must always be satisfied, defining a feasible subspace, and soft constraints whose violation we wish to minimize. More efficient implementation enables earlier experimental exploration of an alternating operator approach to a wide variety of approximate optimization, exact optimization, and sampling problems. Here, we introduce the Quantum Alternating Operator Ansatz, lay out design criteria for mixing operators, detail mappings for eight problems, and provide brief descriptions of mappings for diverse problems.Comment: 51 pages, 2 figures. Revised to match journal pape
    • …
    corecore